
Security Assessment

Onekey
Jun 21st, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
AVC-01 : Lack of Input Validation

AVC-02 : Unused Variable

AVC-03 : Check-effect-interaction Pattern Violation

AVC-04 : Centralized Risk

AVC-05 : Potentially Manipulated Lucky Numbers

CCK-01 : Centralized Risk

CCK-02 : Unknown Implementation of `balanceOf` Function

CCK-03 : Unknown Implementation of `addOrder` Function

CCK-04 : Proper Usage of `require` and `assert` Functions

CCK-05 : Lack of Input Validation

CCK-06 : Centralized Risk

CCK-07 : Typo `refferal`

CCK-08 : Lack of Input Validation

CCK-09 : Lack of Input Validation

HVC-01 : Claiming Rewards On Behalf Of Another User

HVC-02 : Lack of Input Validation

OTC-01 : Costly Loop

OTC-02 : Centralized Risk

RMC-01 : Default Value Used For Target Token

RMC-02 : `finalRoundEndAt` Not Used

Appendix

Disclaimer

About

Onekey Security Assessment

Summary
This report has been prepared for Onekey smart contracts, to discover issues and vulnerabilities in the

source code of their Smart Contract as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

Onekey Security Assessment

Overview

Project Summary

Project Name Onekey

Platform BSC

Language Solidity

Codebase https://github.com/OneKeyHQ/onekey-nft

Commit
a3978f392eee447a44105db99bfa28d7b775ffdf
4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Audit Summary

Delivery Date Jun 21, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Total Issues 20

Critical 0

Major 5

Medium 2

Minor 5

Informational 8

Discussion 0

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft

Audit Scope

ID file SHA256 Checksum

AVC AirdropVault.sol 39618e436b2550764d62fd7f9ad0c8c38c971392bfe1fd16a259b0ea8ccd3238

CCK Crowdfunding.sol aa97d7a5ab64a3757d8d034a387d5d841f9c9d294106bfd53f0a76dc46b770f0

HVC HolderVault.sol 2be2f31561decab538c2dcf117f9308ce7c2e43b48bee75f307016ff1287421e

OTC OnekeyToken.sol 84f78aa800da0365fa8d8976cb046ff40b14d476193cbad2a92fd0a7558291e1

RMC RoundManager.sol 532d277b47fb2aab5a756b2dbaf85f1f1f9409fc3dbaa81472c96aae3189e42c

OCK libraries/Ownable.sol b857e3276c046f6769a05e6acb84d14b696f63d0a99f43fd4696967f39511cb4

SMC libraries/SafeMath.sol 036fcff7adc78867dbc757758c2dea7b71a5a10f1aca069a1e833e2f016133bb

THC libraries/TransferHelper.sol 369a92ec54d78eb988b726e3a8d814267806d707bbe1aa7c1dff49d295279a80

Onekey Security Assessment

Findings

ID Title Category Severity Status

AVC-01 Lack of Input Validation Volatile Code Informational Resolved

AVC-02 Unused Variable Gas Optimization Informational Resolved

AVC-03 Check-effect-interaction Pattern Violation Logical Issue Medium Resolved

AVC-04 Centralized Risk
Centralization /
Privilege

Major Resolved

AVC-05 Potentially Manipulated Lucky Numbers
Centralization /
Privilege

Major Resolved

CCK-01 Centralized Risk
Centralization /
Privilege

Medium Resolved

CCK-02
Unknown Implementation of balanceOf
Function

Centralization /
Privilege

Minor Resolved

CCK-03
Unknown Implementation of addOrder
Function

Centralization /
Privilege

Minor Resolved

CCK-04
Proper Usage of require and assert
Functions

Coding Style Informational Resolved

CCK-05 Lack of Input Validation Volatile Code Informational Resolved

CCK-06 Centralized Risk
Centralization /
Privilege

Major Resolved

CCK-07 Typo refferal Coding Style Informational Resolved

Onekey Security Assessment

20
Total Issues

Critical 0 (0.00%)

Major 5 (25.00%)

Medium 2 (10.00%)

Minor 5 (25.00%)

Informational 8 (40.00%)

Discussion 0 (0.00%)

ID Title Category Severity Status

CCK-08 Lack of Input Validation Logical Issue Informational Resolved

CCK-09 Lack of Input Validation Logical Issue Informational Resolved

HVC-01 Claiming Rewards On Behalf Of Another User Logical Issue Minor Resolved

HVC-02 Lack of Input Validation Volatile Code Informational Resolved

OTC-01 Costly Loop Gas Optimization Minor Resolved

OTC-02 Centralized Risk
Centralization /
Privilege

Major Resolved

RMC-01 Default Value Used For Target Token Volatile Code Major Resolved

RMC-02 finalRoundEndAt Not Used Logical Issue Minor Resolved

Onekey Security Assessment

AVC-01 | Lack of Input Validation

Category Severity Location Status

Volatile Code Informational AirdropVault.sol: 44~50 Resolved

Description

The assigned values to foundingContract and targetToken in the constructor of AirdropVault.sol

should be verified as non-zero values to prevent errors.

Recommendation

Check that the passed-in values are non-zero. Example:

requirerequire((_foundingContract _foundingContract !=!= addressaddress((00)),, "_foundingContract is a zero address""_foundingContract is a zero address"));;
requirerequire((_targetToken _targetToken !=!= addressaddress((00)),, "_targetToken is a zero address""_targetToken is a zero address"));;

Alleviation

[Onekey] The client heeded our advice and added checks that the passed-in values are non-zero in the

latest commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

AVC-02 | Unused Variable

Category Severity Location Status

Gas Optimization Informational AirdropVault.sol: 16 Resolved

Description

The state variable ROLL_IN_PROGRESS in AirdropVault.sol is not used.

Recommendation

We advise the client to consider removing the variable ROLL_IN_PROGRESS .

Alleviation

[Onekey] The client heeded our advice and removed unused variable ROLL_IN_PROGRESS in the latest

commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

AVC-03 | Check-effect-interaction Pattern Violation

Category Severity Location Status

Logical Issue Medium AirdropVault.sol: 124~130 Resolved

Description

rewardClaimed[_round] is updated after TransferHelper.safeTransfer , which violates the check-effect-

interaction pattern.

Recommendation

We advise the client to revise the function claimAirdrop by rewriting the statements from L124 to L130 as

follows:

rewardClaimedrewardClaimed[[_round_round]] == falsefalse;;

TransferHelperTransferHelper..safeTransfersafeTransfer((
 targetToken targetToken,,
 msg msg..sendersender,,
 rewardAmount rewardAmount[[_round_round]]
));;

Alleviation

[Onekey] The client heeded our advice and changed claimed statue before token transfer to avoid the

check-effect-interaction in the latest commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

AVC-04 | Centralized Risk

Category Severity Location Status

Centralization / Privilege Major AirdropVault.sol: 101 Resolved

Description

In function withdrawLINK , the owner of the contract owner could transfer _value amount of token to an

arbitrary address _to .

Recommendation

We advise the client to carefully manage the owner account's private key and avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract based accounts with enhanced security

practices, f.e. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the

private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

[Onekey] withdrawLINK function used to claim unused LINK token. Cause request random numbers from

Chainlink, and the contract will spend some LINK token. So that contract needs have some LINK tokens.

But when the crowdfunding ends, we can claim unused LINK tokens back.

Onekey Security Assessment

AVC-05 | Potentially Manipulated Lucky Numbers

Category Severity Location Status

Centralization / Privilege Major AirdropVault.sol: 86, 105, 144, 152 Resolved

Description

The function claimAirdrop on L105 check if a user should be rewarded by referring to the current round's

lucky number derived from luckyNumberList and registered numbers for the user derived from userInfo .

While on L86, the contract has the privilege to add a new lucky number to luckyNumberList by invoking

the function fulfillRandomness . And this lucky number could be manipulated by setting the variable

_randomness . Also, the function getLuckyNumbers on L144 returns registered numbers for a user derived

from userInfo , and the function getRoundLuckyNumbers on L152 returns the current round's lucky

number derived from luckyNumberList .

Recommendation

We advise the client to check if the contract should have the privilege to append to luckyNumberList in

the way described in the function fulfillRandomness and if the accesses for these aforementioned

functions are configured correctly.

Alleviation

[Onekey] Based on the Chainlink VRFConsumerBase contract, only VRFCoordinator can fulfill the random

number. And fulfillRandomness is an internal function, only rawFulfillRandomness function in

VRFConsumerBase used. We assume the Chainlink project is reliable, and we have got in touch with the

Chainlink team to make sure this function work properly.

Onekey Security Assessment

CCK-01 | Centralized Risk

Category Severity Location Status

Centralization / Privilege Medium Crowdfunding.sol: 82~100 Resolved

Description

The owner of the contract owner has the privilege to change the values of holderContract ,

airdropContract , and roundContract . And these variables are used to decide the target addresses of

transferring in function _deliverReward .

Recommendation

We advise the client to carefully manage the owner account's private key and avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract based accounts with enhanced security

practices, f.e. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the

private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

[Onekey] Add Time-lock with reasonable latency. Use openzeppeline TimelockController contracts.

[Onekey] Crowdfunding contract has been deployed at

0x98DeafE487DcD6DEd695B1bFBCA907B7ef66367f and its's ownership has been transferred to

Timelock deployment with 12 hours delay at 0x9Be2fF9aD9aB148E9A0c9FC42A49753D430f7b8F through

transaction 0xe5d8823a7c5440635d33dd4cc92353db0e89aff046c0fb7348166a90480c2ae2

Onekey Security Assessment

https://bscscan.com/address/0x98DeafE487DcD6DEd695B1bFBCA907B7ef66367f#code
https://bscscan.com/address/0x9Be2fF9aD9aB148E9A0c9FC42A49753D430f7b8F#code
https://bscscan.com/tx/0xe5d8823a7c5440635d33dd4cc92353db0e89aff046c0fb7348166a90480c2ae2

CCK-02 | Unknown Implementation of balanceOf Function

Category Severity Location Status

Centralization / Privilege Minor Crowdfunding.sol: 157, 201 Resolved

Description

On L157 and L201, IERC20(targetAssest) can be any contract address where the IERC20 interface is

implemented. As a result, the invocations of IERC20(targetAssest).balanceOf(address(this)); in

function buyWallet may bring dangerous effects as the implementation is unknown to the user.

Recommendation

We advise the client to restrict the group of users who can access to buyWallet function and check and

ensure the contract specified by IERC20(targetAssest) is a standard smart contract that follows the

IERC20 interface with correct logic implementation as designed in the project repository.

Alleviation

[Onekey] Crowdfunding will set USDT as targetAssest , so we assume USDT contract is safe. And

targetAssest has the immutable attribute so it will never be changed.

Onekey Security Assessment

CCK-03 | Unknown Implementation of addOrder Function

Category Severity Location Status

Centralization / Privilege Minor Crowdfunding.sol: 240 Resolved

Description

On L240, IHolderVault(holderContract) can be any contract address where the IHolderVault interface

is implemented. As a result, the invocation of IHolderVault(holderContract).addOrder in function

_deliverReward may bring dangerous effects as the implementation is unknown to the user.

Recommendation

We advise the client to restrict the group of users who can access to _deliverReward function and check

and ensure the contract specified by IHolderVault(holderContract) is a standard smart contract that

follows the IHolderVault interface with correct logic implementation as designed in the project repository.

Alleviation

[Onekey] IHolderVault is the interface of the HolderVault contract, it will deploy by ourselves, and we will

guarantee the logic implementation are correct. Also, OneKey's contracts will be open source. In the

meantime will be verified on bscscan.

Onekey Security Assessment

CCK-04 | Proper Usage of require and assert Functions

Category Severity Location Status

Coding Style Informational Crowdfunding.sol: 78 Resolved

Description

The assert function should only be used to test for internal errors, and to check invariants. The require

function should be used to ensure valid conditions, such as validation of inputs, state variables, and return

values.

Recommendation

Consider using the require function, along with a custom error message when the condition fails, instead

of the assert function.

Alleviation

[Onekey] The client heeded our advice and replace the assert with require in the latest

commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

CCK-05 | Lack of Input Validation

Category Severity Location Status

Volatile Code Informational Crowdfunding.sol: 67~75 Resolved

Description

The assigned values to onekeyToken , WETH , and targetAssest in the constructor of the contract

Crowdfunding should be verified as non-zero values to prevent errors.

Recommendation

Check that the passed-in values are non-zero. Example:

requirerequire((_onekeyToken _onekeyToken !=!= addressaddress((00)),, "_onekeyToken is a zero address""_onekeyToken is a zero address"));;
requirerequire((_WETH _WETH !=!= addressaddress((00)),, "_WETH is a zero address""_WETH is a zero address"));;
requirerequire((_targetAssest _targetAssest !=!= addressaddress((00)),, "_targetAssest is a zero address""_targetAssest is a zero address"));;

Alleviation

[Onekey] The client heeded our advice and added the input validators in the constructor of the contract in

the latest commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

CCK-06 | Centralized Risk

Category Severity Location Status

Centralization / Privilege Major Crowdfunding.sol: 113~118 Resolved

Description

In function updateWallets , the owner of the contract owner has the privilege to update the state variable

wallets . And wallets is used in buying wallets in the function buyWallet on L121 and delivering rewards

in the function _deliverReward on L219.

Recommendation

We advise the client to carefully manage the owner account's private key and avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract based accounts with enhanced security

practices, f.e. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the

private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

[Onekey] Add Time-lock with reasonable latency. Use openzeppeline TimelockController contracts.

[Onekey] Crowdfunding contract has been deployed at

0x98DeafE487DcD6DEd695B1bFBCA907B7ef66367f and its's ownership has been transferred to

Timelock deployment with 12 hours delay at 0x9Be2fF9aD9aB148E9A0c9FC42A49753D430f7b8F through

transaction 0xe5d8823a7c5440635d33dd4cc92353db0e89aff046c0fb7348166a90480c2ae2

Onekey Security Assessment

https://bscscan.com/address/0x98DeafE487DcD6DEd695B1bFBCA907B7ef66367f#code
https://bscscan.com/address/0x9Be2fF9aD9aB148E9A0c9FC42A49753D430f7b8F#code
https://bscscan.com/tx/0xe5d8823a7c5440635d33dd4cc92353db0e89aff046c0fb7348166a90480c2ae2

CCK-07 | Typo refferal

Category Severity Location Status

Coding Style Informational Crowdfunding.sol: 1 Resolved

Description

The word refferal is used across the file Crowdfunding.sol .

Recommendation

We advise the client to consider renaming refferal to referral to avoid confusion.

Alleviation

[Onekey] The client heeded our advice and correct the typo in the latest

commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

CCK-08 | Lack of Input Validation

Category Severity Location Status

Logical Issue Informational Crowdfunding.sol: 139~144 Resolved

Description

In function buyWallet , the user will fail to buy wallets if _sellToken is ether. Because the contract calls

safeTransferFrom directly without checking _sellToken is ether or not.

Recommendation

We advise the client to handle the case when _sellToken is ether separately.

ifif ((_sellToken _sellToken ==== WETH WETH)) {{

}} elseelse {{
 TransferHelper TransferHelper..safeTransferFromsafeTransferFrom((
 _sellToken _sellToken,,
 msg msg..sendersender,,
 addressaddress((thisthis)),,
 _sellAmount _sellAmount
));;
}}

Alleviation

[Onekey] The client fixed this issue by updating the function buyWallet with following snippet in the latest

commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

ifif ((_sellToken _sellToken ==== ETH ETH)) {{

}} elseelse {{

 TransferHelper TransferHelper..safeTransferFromsafeTransferFrom((
 _sellToken _sellToken,,
 msg msg..sendersender,,
 addressaddress((thisthis)),,
 _sellAmount _sellAmount
));;
}}

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

CCK-09 | Lack of Input Validation

Category Severity Location Status

Logical Issue Informational Crowdfunding.sol: 212 Resolved

Description

In function _fillQuote , the call to safeApprove will fail if _sellToken is ether.

Recommendation

We advise the client to add a check for _sellToken .

ifif ((_sellToken _sellToken ==== WETH WETH)) {{

}} elseelse {{
 TransferHelper TransferHelper..safeApprovesafeApprove((_sellToken_sellToken,, _spender _spender,, _sellAmount _sellAmount));;
}}

Alleviation

[Onekey] The client fixed this issue by updating the function _fillQuote() with the following snippet in

the latest commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

ifif ((_sellToken _sellToken !=!= ETH ETH))
 TransferHelper TransferHelper..safeApprovesafeApprove((_sellToken_sellToken,, _spender _spender,, _sellAmount _sellAmount));;

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

HVC-01 | Claiming Rewards On Behalf Of Another User

Category Severity Location Status

Logical Issue Minor HolderVault.sol: 47~59 Resolved

Description

In function claim , the rewards is sent to the address _user , and this address could be different from

msg.sender .

Recommendation

We advise the client to consider adding a requirement ensures that any user should only claim his/her own

reward. Example:

requirerequire((_user _user ==== msg msg..sendersender,, "claiming rewards for a user other than msg.sender""claiming rewards for a user other than msg.sender"));;

Alleviation

[Onekey] The client heeded our advice and added the user check in function claim() in the latest

commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

requirerequire((_user _user ==== msg msg..sendersender,, "SHOULD_CLAIM_BY_THEMSELVES""SHOULD_CLAIM_BY_THEMSELVES"));;

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

HVC-02 | Lack of Input Validation

Category Severity Location Status

Volatile Code Informational HolderVault.sol: 40~44 Resolved

Description

The assigned values to targetToken and foundingContract in the constructor of the contract

HolderVault should be verified as non-zero values to prevent errors.

Recommendation

Check that the passed-in values are non-zero. Example:

requirerequire((_targetToken _targetToken !=!= addressaddress((00)),, "_targetToken is a zero address""_targetToken is a zero address"));;
requirerequire((_foundingContract _foundingContract !=!= addressaddress((00)),, "_foundingContract is a zero address""_foundingContract is a zero address"));;

Alleviation

[Onekey] The client heeded our advice and added the input validators in the constructor of the contract in

the latest commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

OTC-01 | Costly Loop

Category Severity Location Status

Gas Optimization Minor OnekeyToken.sol: 82~88 Resolved

Description

The storage variable totalMinted is accessed in each iteration of the loop from L82 to L88. This operation

could be costly in terms of gas consumption.

Recommendation

We advise the client to consider using a local variable to hold the intermediate result. Example:

uint256uint256 tmp tmp == totalMinted totalMinted;;
forfor ((uint256uint256 i i == 00;; i i << _amount _amount;; i i++++)) {{
 ifif ((_id _id ==== 00)) user user..minimini..pushpush((tmptmp));;
 elseelse ifif ((_id _id ==== 11)) user user..touchtouch..pushpush((tmptmp));;
 elseelse ifif ((_id _id ==== 22)) user user..propro..pushpush((tmptmp));;
 tmp tmp +=+= 11;;
}}
totalMinted totalMinted == tmp tmp;;

As the cost is largely dependent on storage accesses, the original implementation should have 4 storage

reads and 1 storage write in each iteration. In the fixed version shown above, there should be 1 storage

read and 1 storage write in the above code snippet.

Alleviation

[Onekey] The client heeded our advice and used memory variable temp to reduce gas consumption in the

latest commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

OTC-02 | Centralized Risk

Category Severity Location Status

Centralization / Privilege Major OnekeyToken.sol: 37, 78 Resolved

Description

In function mint , the minter of the contract MINTER_ROLE could mint _amount amount of token to an

arbitrary address _account .

Recommendation

We advise the client to carefully manage the MINTER_ROLE account's private key and avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to

be improved via a decentralized mechanism or via smart-contract based accounts with enhanced security

practices, f.e. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the

private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

[Onekey] Add Time-lock with reasonable latency. Use openzeppeline TimelockController contracts.

[Onekey] OnekeyToken contract has been deployed at

0xAa25850bb317dA4B5d1CC2B45C0a9F6263faB4db and deployer's MINTER_ROLE has been revoked

through transaction 0x0a04b75acfa7deda6e9a6e4460dd8ddd93243df96808464db5d988f823786aae

Moreover, DEFAULT_ADMIN_ROLE has been granted to Timelock deployment with 12 hours delay at

0x9Be2fF9aD9aB148E9A0c9FC42A49753D430f7b8F through transaction

0xceba99146ebaf2379fce905ab94b60fd5fa475e8cf77e1d314131ee85c6da3e3, and deployer's

DEFAULT_ADMIN_ROLE has been revoked through transaction

0xb820aa7c7ee378e857a67510b88385d6cfbf84c255c4fe0975662156f4a81868

Onekey Security Assessment

https://bscscan.com/address/0xAa25850bb317dA4B5d1CC2B45C0a9F6263faB4db#code
https://bscscan.com/tx/0x0a04b75acfa7deda6e9a6e4460dd8ddd93243df96808464db5d988f823786aae
https://bscscan.com/address/0x9Be2fF9aD9aB148E9A0c9FC42A49753D430f7b8F#code
https://bscscan.com/tx/0xceba99146ebaf2379fce905ab94b60fd5fa475e8cf77e1d314131ee85c6da3e3
https://bscscan.com/tx/0xb820aa7c7ee378e857a67510b88385d6cfbf84c255c4fe0975662156f4a81868

RMC-01 | Default Value Used For Target Token

Category Severity Location Status

Volatile Code Major RoundManager.sol: 37, 150 Resolved

Description

The state variable targetToken is declared on L37, and it will have an all-zero byte-representation as its

default value. Since there is no write to targetToken in the contract, this default value will be used for

transferring on L150, which may lead to unexpected results.

Recommendation

We advise the client to check if the usage of targetToken on L150 is correct.

Alleviation

[Onekey] Set targetAssest value in the constructor. And change targetToken to targetAsset , the

same name in other contacts.

[Onekey] The client heeded the advice and fixed the issue in the latest

commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

RMC-02 | finalRoundEndAt Not Used

Category Severity Location Status

Logical Issue Minor RoundManager.sol: 31 Resolved

Description

In RoundManager.sol , the state variable finalRoundEndAt is initialized but not used.

Recommendation

We advise the client to check if the following require statement is needed at the beginning of the function

updateRoundTime .

requirerequire((blockblock..number number <=<= finalRoundEndAt finalRoundEndAt,, "ALL_ROUND_IS_OVER""ALL_ROUND_IS_OVER"));;

Alleviation

[Onekey] The client fixed the bug by adding following check in the latest

commit:4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

requirerequire((blockblock..number number <=<= finalRoundEndAt finalRoundEndAt,, "ALL_ROUND_IS_OVER""ALL_ROUND_IS_OVER"));;

Onekey Security Assessment

https://github.com/OneKeyHQ/onekey-nft/tree/4f75fabd14112d18ac734c2e0e5c0d1f5e5da217

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Onekey Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Onekey Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Onekey Security Assessment

